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This note summarizes some of the work done on Vlasov simulation methods during the two-week
visit of E. Sonnendrucker to LBNL in July-August, 2002. It describes a variety of algorithms which
might be employed in solving the coupled Vlasov-Poisson system on a grid in phase space. In
particular, it emphasizes a class of methods which do not employ the sort of operator splitting
commonly used in Vlasov methods, whereby the distribution function information is alternately
updated along planes of constant x and constant v. Instead, the distribution function information
on the phase space nodes is given by either (a) multi-dimensional interpolation of the gridded f at
an earlier time onto a set of phase space locations which are obtained by tracking the nodes back to
that earlier time (“backward semi-Lagrangian”), or (b) weighted deposition or averaging of f values
from orbits onto nodes (“forward semi-Lagrangian” or “fully Lagrangian”).

I. INTRODUCTION

Vlasov methods and particle-in-cell (PIC) methods
each have advantages and disadvantages. PIC methods
have been the work-horses of both plasma and beam sim-
ulation. However, they can suffer from statistical “noise”
because they, in essence, compute ρ(x) by counting par-
ticles in cells (“nearest grid point”) or by means of a
smoother but related procedure (“cloud in cell,” etc.).
For some applications this noise is a significant consider-
ation, mandating the use of large numbers of simulation
particles. A Vlasov code tends to be less noisy but may
suffer from inaccuracies and/or diffusion, especially when
structures too fine to be well-resolved by the phase space
grid arise in the course of the computation. Another as-
pect of the Vlasov method is its dynamic range: phase
space regions of low density are tracked with the same
fidelity as those of high density. This can be either de-
sirable or undesirable, depending upon the application.
It does imply a certain inefficiency in that effort is de-
voted to computing the charge density in regions which
exert little influence on the self-field, in contrast with PIC
where a type of “importance weighting” is automatically
present.

The tradeoff is cost, especially in higher-dimensional
systems. Indeed, for many problems PIC methods pro-
duce a sufficiently accurate answer at far lower cost than
a Vlasov method. However, in beam physics problems
where dynamic range is important (and especially in
studies of beam “halo” formation), the process is suf-
ficiently rapid that a simulation of a relatively short sec-
tion of the beam line (for example, in the neighborhood
of a transition in beam line parameters) is all that is
needed. In such applications Vlasov methods may en-
able more efficient computations, though some further
development is needed (e.g., a time-varying phase space
grid is needed for alternating gradient systems).

This note first discusses the various methods by which
the charge density can be computed in a calculation
based on semi-Lagrangian or Lagrangian methods. It

then describes a number of algorithms with comments
on some aspects of the ir implementation.

II. METHODS OF CHARGE DEPOSITION

It is possible to compute the spatial charge distribution
from a set of simulation particles or markers in several
ways. The most familiar of these is the PIC deposition,
whereby each simulation “superparticle” carries a preas-
signed total charge corresponding to that of a large num-
ber of physical particles (this number is often referred to
as a “weight”), and a mass such that the charge-to-mass
ratio, and thus yields the orbit, are correct. Most com-
monly, all superparticles are assigned the same weight,
but this need not be the case. When variable weights
are used (for example, to concenterate the particles in a
region where improved statistics are desired), care must
be employed; in some cases the “heavy” and “light” par-
ticles will mix, posibly leading to severe fluctuation prob-
lems. These arise if, e.g., a heavy particle moves into a
low-density region while light particles move into a high-
density region and so fail to exert much influence on the
local density.

In what we term a “Vlasov” prescription for the charge
density ρ(x), the local density at each spatial grid point
is obtained by an integration of the multi-dimensional
particle distribution function over velocities; with q the
particle charge this is:

ρ(x) = q

∫

f(x, v)dv (1)

This terminology is our own. Indeed, some “Vlasov”
codes (e.g., Denavit’s [1]) have used PIC deposition. Fur-
thermore, the “δf” methods [3–8] commonly use PIC
deposition. We consider such methods to be a class of
Lagrangian Vlasov methods because either (a) the value
of f is carried along the orbits (characteristics) and δf
is computed as the difference between the f which is ad-
vected unchanged (per Liouville) along the marker orbit
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and the locally-evaluated value of f0 (as advocated by
Aydemir [5] and by Friedman et.al. [8]), or (b) the per-
turbation δf (or a quantity related to it) is advanced
along the marker orbit via an ordinary differential equa-
tion.

Most Vlasov codes indeed use some form of “Vlasov”
prescription. In such a formulation, computation of
ρ(x) requires that, for each marker, x and v be known
at the same time level. This stands in contrast with
PIC methods in which ρ(x) can be computed from the
marker locations alone, and is a significant complica-
tion in algorithm design (for example, it precludes use
of the simple leapfrog method commonly employed in
PIC codes). The charge-deposition implementation dif-
fers significantly among the Vlasov methods:

(a) When a backward semi-Lagrangian method is used,
all the markers are at the nodes when it is time to com-
pute ρ(x), and a suitably-normalized sum over nodal f
values at the set of nodes associated with each spatial
position yields ρ at that position.

(b) When a forward semi-Lagrangian method is used,
the markers wind up at arbitrary locations within the
phase space cells at the end of the time step. However,
they have been “launched” from a uniform grid, and so
each represents the same quantity of phase space volume.
Thus, each may be thought of as containing an amount
of charge proportional to its value of f . This charge
can be weighted to the phase space grid using methods
analogous to those employed in PIC for weighting to a
position-space grid, such as an area-weighted scatter-add.
Since the motion of the markers is a Liouvillean flow,
over short times the phase space “cubes” may distort
but the density of markers must remain constant (in the
limit of perfectly-computed orbits). So, within an overall
constant, a nodal f value obtained by a sum over marker
contributions is approximately equivalent to an average
over marker f values in the vicinity of that node. The
expression used is:

fk =
∑

Wjkfj (2)

where Wjk is the particle “shape” function (for example,
the area-weighting function) that defines the contribution
of particle j onto node k based upon their phase space
locations. This method can break down if the steps are
too large, since the phase-space volumes may distort so
severely (stretch along one axis and contract on others)
that some nodes are left with no nearby markers, or with
a smaller number than would be consistent with constant
marker density.

(c) A “hybrid” method is based on the forward semi-
Lagrangian technique, but with the marker identities pre-
served over multiple time steps. (A similar technique
was used by Denavit, but he used a PIC-like deposi-
tion). Provided the markers are initially loaded onto a
uniform grid in phase space, the situation is similar to
that immediately above, and again the markers must be

re-launched before the phase space volumes associated
with them distort too severely. Of course, a number of
markers greater than the number of nodes might be em-
ployed, and with the correspondingly smaller phase space
volumes associated with them it would take longer for
non-linear distortions to invalidate the constant marker
density assumption. Such a procedure would reduce the
diffusion associated with re-launching markers, but might
be an expensive remedy.

(d) A “Monte-Carlo” Vlasov method is also possible and
has some attractive features. Here, the markers are
placed in phase space where desired, not necessarily on a
regular grid; they might be concentrated in regions where
the initial f is varying rapidly, for example. Each carries
its own value of f forever, but their associated quantities
of phase space volume will, in general, differ. In such a
system it is necessary to obtain the value of f at node k
by averaging over the contributions of the markers in its
vicinity, rather than by summing the contributions. The
expression used is:

fk =

∑

Wjkfj
∑

Wjk

(3)

An attractive aspect of this method is the prospect for
introducing new markers or deleting old ones as the calcu-
lation evolves. This is relatively straightforward because
the markers carry only information about the values of
f , rather than a fixed amount of charge as in PIC. (It
is challenging in PIC to add or delete particles because
charge and momentum must be taken from old particles
if they are to be given to new ones). However, it remains
to specify a prescription for adding and deleting mark-
ers. Also, in regions where the spacing between markers
is large, it would be desirable to employ a “wider” par-
ticle shape. Both of these concerns are automatically
addressed by the wavelet-based Adaptive Mesh Refine-
ment method, which also concentrates resolution where
it is needed while naturally discarding fine-grained fea-
tures which can’t be resolved even on the finest grid.

Computation of the quantity
∑

Wjk is a useful in-
tegrity check in all of the non-split methods discussed
here; when it deviates significantly from its nominal value
anywhere in the grid, the discrete analog of Liouville’s
theorem is not being preserved, and so smaller step sizes
and/or smaller grid cells are warranted. Alternatively,
renormalization of the charge densities by this denomi-
nator might be employed in methods (b) and (c), just as
in (d), to possible advantage. Split methods, which are
based on separate advection steps along x and v lines,
automatically conserve the volumes of the phase space
“cubes” and so there is no need to compute such a check.

III. BACKWARD SEMI-LAGRANGIAN WITH

SPLIT-LEAPFROG ADVANCE

In this method all markers start on the nodes and are
tracked backward in time to their own particular phase
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space locations at the earlier time level. The distribution
function fgrid is obtained by interpolating the nodal f
values onto the marker locations. This interpolation may
be via splines, Hermite polynomials, or a particle shape
function as in PIC, e.g. area weighting. The algorithm is
shown in Fig. 1. In Steps 1-3 a first estimate of E at the

n-1 n n+1

| | |

1) div J

2) rho ---------------------> rho

3) E

Begin loop

4) v <--- v

5) x <---------- x

6) v <--- v

7) interp f ----------- f

8) rho

9) E

End loop

FIG. 1: Backward semi-Lagrangian with split-leapfrog ad-
vance.

advanced time level n + 1 is obtained; some options for
this are discussed below. In Step 4 the marker velocities
are pushed backward from the nodes to the (temporary)
half time level n + 1/2 using the best-available estimate
for E at time level n + 1, evaluated at the nodes. In
Step 5 the marker positions are pushed backward using
the newly computed temporary velocities. In Step 6 the
velocities are pushed back to the earlier time level n using
the (saved) nodal E at that time level, interpolated onto
the newly computed positions. In Step 7 the distribution
function values at the marker locations in phase space
at time n are computed by interpolation; by Liouville’s
theorem these are also the new nodal f values. That is,

fn+1(nodes) = fn(xn, vn).

On Step 8 the nodal f values are summed over the veloc-
ity coordinates to obtain the charge density ρ(x), and in
Step 9 Poisson’s equation is solved to obtain an improved
nodal E field.

The algorithm was derived by thinking in terms of an
“isochronous” variant of the leapfrog advance where x
and v each begin and end every step on integer time
levels. Nonetheless it is useful (and algebraically equiva-
lent) to write this marker advance with right-hand sides
as averages of old and new time levels, as follows:

xi − xn−1

∆t
=

vj + vn−1

2
; (4)

vj − vn−1

∆t
=

En(xi) + En−1(xn−1)

2
. (5)

The predictor-corrector algorithm described above
should work well. It is possible to perform further correc-
tor iterations in a loop, as indicated in the figure. Conver-
gence of such an iteration may be expected to be rapid.

The first estimate of E at the advanced time level n + 1
may be obtained in a number of ways:

• time-advancing ρ(x) on the grid, using the relation-

ship ∂ρ
∂t

= −∇·J obtained by taking the divergence
of Ampere’s law (this is just the continuity equa-
tion) and then solving the Poisson equation; this
option is the one shown in Fig. 1.

• using a forward advance of the markers from the
last step (a half-step in v followed by a full step
in x) to yield a PIC-like ρ(x) and then solving the
Poisson equation.

• using a backward semi-Lagrangian step based on a
leapfrog advance of double the usual step size (so
that En, which is known, can be used for a time-
centered backward velocity push), as described in
Sec. V.

• using E from the last time step, or extrapolated
from multiple earlier time steps (a linear, parabolic,
or cubic fit to past data).

IV. FORWARD SEMI-LAGRANGIAN WITH

SPLIT-LEAPFROG ADVANCE; “F” METHOD

In this method all markers start on the nodes and are
advanced to their own particular phase space locations.
The distribution function fgrid is obtained by weighting
the f values carried along particle orbits onto the nodes
using a “scatter-add” process and a particle shape func-
tion W of size roughly that of one cell; see option (b) of
Sec. II. Again the first estimate of E may be obtained
by various means. The algorithm is shown in Fig. 2. It is

n-1 n n+1

| | |

1) div J

2) rho ---------------------> rho

3) E

Begin loop

4) v ---> v

5) x ----------> x

6) v ---> v

7) f

8) rho

9) E

End loop

FIG. 2: Forward semi-Lagrangian with split-leapfrog advance.

possible to carry the markers forward over multiple steps,
without re-launching them anew at each step. This might
be done for some number of steps and then the markers
re-launched. As mentioned in Sec. II, Denavit employed
a similar technique but with a PIC-like charge deposi-
tion, so that his method reduces to PIC when the in-
terval between re-launchings is made infinite. When the
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markers are preserved indefinitely but a Vlasov prescrip-
tion for ρ is used, we obtain a fully-Lagrangian method
that we term the ”f” method. It removes the diffusion of
f associated with interpolations and re-launching mark-
ers. In principle it can be made both time-reversible and
symplectic, though (in contrast with PIC) this seems to
require iteration via a method such as the one shown
above. However, ultimately as fine-grained structures in
phase space (such as “spiral arms”) develop, the charge
density and field will become inaccurate, leading to in-
accurate trajectories and perhaps to “collisional” effects
similar to those in PIC methods (even if the method is
made symplectic). So, to run an ”f” method for a long
time, one needs to use a large number of markers, or to
introduce new ones, again as described in Sec. II. Thus,
depending upon the problem, periodic re-launching (each
step, or less frequently) may help control the formation
of under-resolved structures.

V. BACKWARD SEMI-LAGRANGIAN BASED

ON DOUBLE-STEP ADVANCE

It is possible to track x and v backward in a centered
manner with a single field solution. At time step n, the
algorithm advances f on the grid from time level n−1 to
time level n+1; it is a backward semi-Lagrangian method
because at time level n+1 the markers are located at the
nodes. The basic equations to be solved are:

xi − xn−1

2∆t
= vn =

vj + vn−1

2
; (6)

vj − vn−1

2∆t
= En(xn) = En

(

xi + xn−1

2

)

. (7)

Subtracting the latter from 1/∆t times the former yields

xi − xn−1

2∆t2
−

vj

∆t
= −En

(

xi + xn−1

2

)

. (8)

An iterative procedure may be used to solve for xn−1.
We define:

xn−1
m = xn−1

m−1 − α (9)

where m denotes the iteration level and we set xn−1
0 = xi,

that is, the grid coordinate. Expanding En about the
“best-guess” location (xi + xn−1

m−1)/2, we have:

xi − xn−1
m−1 + α

2∆t2
−

vj

∆t
=

−En

(

xi + xn−1
m−1

2

)

+
α

2
∇En

(

xi + xn−1
m−1

2

)

.(10)

Solving for α and inserting the result into Eqn. 9, we
obtain the iterationw hich is to be carried out until con-
vergence is achieved:

xn−1
m =

xn−1
m−1 −

2

[

vj

∆t
−En

(

xi+x
n−1

m−1

2

)

−
xi−x

n−1

m−1

2∆t2

]

[

1

∆t2
−∇En

(

xi+x
n−1

m−1

2

)] .(11)

If linear interpolation is employed and ∇E computed
using the corresponding expression, the iteration should
converge almost immediately provided that the particle
stays within the cell. The initial guess xn−1

0 = xi implies
a gradient of E calculated at the node itself, so a centered
two-cell difference of E may be needed to begin with.

n-1 n n+1

| | |

1) x <------------------------ x

Begin loop

2) x <---------- E ---------- v,x

End loop

3) v <-------------------------v

4) f

5) rho

6) E

FIG. 3: Backward semi-Lagrangian based on double-step ad-
vance.

A graphical depiction of this algorithm is shown in
Fig. 3. In Step 1 a first estimate is made of the “old”
position xn−1 (which is needed so that the electric field
En can be evaluated at the right position). Step 2 is
the iteration loop described above, that is, the repeated
application of Eqn. 11. Step 3 is Eqn. 7 rearranged to
solve for vn−1. Finally Steps 4-6 are the mapping of f ,
computation of ρ(x), and Poisson solution.

Note that one does not actually “skip” any time steps
in this algorithm; but the “latest” f , fn, is not directly
mapped onto the new fn+1. This algorithm is appealing
because it does not require repeating the Poisson solution
during the step; and the iteration for xn−1 may be ex-
pected to converge rapidly. However, there is reason to be
concerned about an undesirable “computational mode”
arising because the distribution function at time level n
is decoupled, as noted just above. An averaging proce-
dure might be applied intermittently to mitigate such an
occurrence.
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